站长资源脚本专栏

tensorflow mnist 数据加载实现并画图效果

整理:jimmy2025/3/4浏览2
简介关于 TensorFlowTensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台

关于 TensorFlow

TensorFlow"htmlcode">

%matplotlib
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

print('Training data size: ', mnist.train.num_examples)
print('Validation data size: ', mnist.validation.num_examples)
print('Test data size: ', mnist.test.num_examples)

img0 = mnist.train.images[0].reshape(28,28)
img1 = mnist.train.images[1].reshape(28,28)
img2 = mnist.train.images[2].reshape(28,28)
img3 = mnist.train.images[3].reshape(28,28)

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(221)
ax1 = fig.add_subplot(222)
ax2 = fig.add_subplot(223)
ax3 = fig.add_subplot(224)

ax0.imshow(img0)
ax1.imshow(img1)
ax2.imshow(img2)
ax3.imshow(img3)
fig.show()

画图结果:

tensorflow mnist 数据加载实现并画图效果

总结

以上所述是小编给大家介绍的tensorflow mnist 数据加载实现并画图效果,希望对大家有所帮助!